If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=300-10(x^2+10)
We move all terms to the left:
50-(300-10(x^2+10))=0
We calculate terms in parentheses: -(300-10(x^2+10)), so:We get rid of parentheses
300-10(x^2+10)
determiningTheFunctionDomain -10(x^2+10)+300
We multiply parentheses
-10x^2-100+300
We add all the numbers together, and all the variables
-10x^2+200
Back to the equation:
-(-10x^2+200)
10x^2-200+50=0
We add all the numbers together, and all the variables
10x^2-150=0
a = 10; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·10·(-150)
Δ = 6000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6000}=\sqrt{400*15}=\sqrt{400}*\sqrt{15}=20\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{15}}{2*10}=\frac{0-20\sqrt{15}}{20} =-\frac{20\sqrt{15}}{20} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{15}}{2*10}=\frac{0+20\sqrt{15}}{20} =\frac{20\sqrt{15}}{20} =\sqrt{15} $
| 4(2x-5)=2(x-5) | | 7(5y-2)-(6y+2)= | | 1/4x+7/16=3/8 | | 4x^2+x-1=2 | | 16=8(r-6) | | -200=30j-5)5j+20 | | 2x+1+18=90 | | p=2L+2W;L=91,W=92 | | -2p+(-3p+4)=-20 | | 4^(x+3)=5x | | p=2L+2WL=91W=92 | | x(3x+4)=440 | | 6s-11=-2s | | 4n-5=39 | | 4^x+3=5x | | 4x-3(-2x+)=-2 | | 2(2+3v)=34 | | 3/8(x-6)=4/5(x-6) | | 108=2x²+6x | | -11=d/3-13 | | -9=5(-3k-2)+1 | | 108=2x²=6x | | 3/8x-18/8=4/5x-24/5 | | 3(1-2p)+p=-27 | | 4(9x+2)=15 | | 2(5v+2)=44 | | -36=-6(4+2n) | | 20=5w+12.4(1–w) | | 8-x|7=-6 | | -6b-8b=98 | | 9v+7=88 | | b-63=135 |